Punch Press Data

Hole Punching Tonnage "Quick Formula"
Perimeter x Thickness x Shear Strength (In Thousands)

divided by 2

Example 2" Square Hole in 1/4 M.S

8" x. 250×50

$$
=50 \text { Tons }
$$

2

Computation of Punching Pressures

Punching pressure required may be reduced by approximately one-half if shear is milled on the punch or die. Shear does not aid in reducing punching pressure when metal is $1 / 4^{\prime \prime}$ or more in thickness.

Example: To find punching pressure required to punch a 1 " round hole through 16 gauge mild steel $1 "$ multiplied by 3.1416 (circumference) multiplied by .0598 (16 gauge) multiplied by 50,000 pounds (tensile strength) equals $9,817.5$ pounds pressure required or approximately 5 tons.

Example: To find punching pressure required to punch a $1-1 / 2^{\prime \prime}$ square hole through 20 gauge stainless steel - 1-1/2 +1-1/2 (circumference) multiplied by .0359 (20 gauge) multiplied by 90,000 pound (tensile strength) equals 22,500 pound pressure required or approximately 11 tons.

Steel Wt. Formula
LBS.IFT.
Rounds $-2.67 \times$ dia 2
Flats and sqs. - $3.4 \times$ width x thickness
Hexagon - $2.94 \times$ dia 2 (Across Flats)
Round Tubing - $2.67 \times\left(\mathrm{D}^{2}-\mathrm{ID}^{2}\right)$
Square Tubing - $3.4 \times\left(\mathrm{OD}^{2}-\mathrm{ID}^{2}\right)$
LBS. PER SQ. FOOT
Plate - 4.8 thickness in inches

